The Cooley–Tukey FFT and Group Theory
نویسندگان
چکیده
In 1965 J. Cooley and J. Tukey published an article detailing an efficient algorithm to compute the Discrete Fourier Transform, necessary for processing the newly available reams of digital time series produced by recently invented analog-to-digital converters. Since then, the Cooley– Tukey Fast Fourier Transform and its variants has been a staple of digital signal processing. Among the many casts of the algorithm, a natural one is as an efficient algorithm for computing the Fourier expansion of a function on a finite abelian group. In this paper we survey some of our recent work on he “separation of variables” approach to computing a Fourier transform on an arbitrary finite group. This is a natural generalization of the Cooley–Tukey algorithm. In addition we touch on extensions of this idea to compact and noncompact groups. Pure and Applied Mathematics: Two Sides of a Coin The Bulletin of the AMS for November 1979 had a paper by L. Auslander and R. Tolimieri [3] with the delightful title “Is computing with the Finite Fourier Transform pure or applied mathematics?” This rhetorical question was answered by showing that in fact, the finite Fourier transform, and the family of efficient algorithms used to compute it, the Fast Fourier Transform (FFT), a pillar of the world of digital signal processing, were of interest to both pure and applied mathematicians. Mathematics Subject Classification: 20C15; Secondary 65T10.
منابع مشابه
Algebraic Signal Processing Theory: Cooley-Tukey Type Algorithms for DCTs and DSTs
This paper presents a systematic methodology based on the algebraic theory of signal processing to classify and derive fast algorithms for linear transforms. Instead of manipulating the entries of transform matrices, our approach derives the algorithms by stepwise decomposition of the associated signal models, or polynomial algebras. This decomposition is based on two generic methods or algebra...
متن کاملDifferent Approaches for OFDM Transmitter and Receiver Design in Hardware FPGA Design and Implementation with Performance Comparison
In this paper we investigate performances (bandwidth and speed) that could be obtained using basic logic structures for implementing improved Cooley-Tukey algorithm for IFFT/FFT in transmitter/receiver, as well the approach for implementing OFDM processing unit based on optimized ROM implementation. We implemented these techniques for OFDM in Virtex5 and Viterx7 FPGA boards, and we analyzed the...
متن کاملCooley-Tukey FFT like algorithms for the DCT
The Cooley-Tukey FFT algorithm decomposes a discrete Fourier transform (DFT) of size n = km into smaller DFTs of size k and m. In this paper we present a theorem that decomposes a polynomial transform into smaller polynomial transforms, and show that the FFT is obtained as a special case. Then we use this theorem to derive a new class of recursive algorithms for the discrete cosine transforms (...
متن کاملPaired Faster Fft: Grigoryan Fft Implementation and Performance on Xilinx Fpgas and Tms Dsps
DOI: 10.5281/zenodo.55536 ABSTRACT Discrete Fourier Transform is a principal mathematical method for the frequency analysis and has wide applications in Engineering and Sciences. Because the DFT is so ubiquitous, fast methods for computing DFT have been studied extensively, and continuous to be an active research. The way of splitting the DFT gives out various fast algorithms. In this paper, we...
متن کاملGrioryan Fft and Cooley-tukey Fft onto Xilinx Virtex-ii pro and Virtex-5 Fpgas
A large family of signal processing techniques consist of Fourier-transforming a signal, manipulating the Fourier-transformed data in a simple way, and reversing the transformation. We widely use Fourier frequency analysis in equalization of audio recordings, X-ray crystallography, artefact removal in Neurological signal and image processing, Voice Activity Detection in Brain stem speech evoked...
متن کامل